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Abstract
There is currently no “gold standard” marker of cognitive performance impairment resulting from
sleep loss. We utilized pattern recognition algorithms to determine which features of data
collected under controlled laboratory conditions could most reliably identify cognitive
performance impairment in response to sleep loss using data from only one testing session, such as
would occur in the “real world” or field conditions. A training set for testing the pattern
recognition algorithms was developed using objective Psychomotor Vigilance Task (PVT) and
subjective Karolinska Sleepiness Scale (KSS) data collected from laboratory studies during which
subjects were sleep deprived for 26 – 52 hours. The algorithm was then tested in data from both
laboratory and field experiments. The pattern recognition algorithm was able to identify
performance impairment with a single testing session in individuals studied under laboratory
conditions using PVT, KSS, length of time awake and time of day information with sensitivity and
specificity as high as 82%. When this algorithm was tested on data collected under real-world
conditions from individuals whose data were not in the training set, accuracy of predictions for
individuals categorized with low performance impairment were as high as 98%. Predictions for
medium and severe performance impairment were less accurate. We conclude that pattern
recognition algorithms may be a promising method for identifying performance impairment in
individuals using only current information about the individual’s behavior. Single testing features
(e.g., number of PVT lapses) with high correlation with performance impairment in the laboratory
setting may not be the best indicators of performance impairment under real-world conditions.
Pattern recognition algorithms should be further tested for their ability to be used in conjunction
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with other assessments of sleepiness in real-world conditions to quantify performance impairment
in response to sleep loss.
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performance impairment; sleep deprivation; pattern recognition

1.0 Introduction
Laboratory studies have quantified the effects of insufficient sleep from either acute sleep
deprivation or chronic sleep restriction on cognitive performance, including impaired
reaction time, accuracy, visual attention, working memory and decision making, and
subjective alertness (Belenky et al. 2003, Van Dongen et al. 2003, Santhi et al. 2007). It is
now well accepted that multiple aspects of performance and alertness are affected by (i) a
circadian process, an ~24-hour rhythm regulated by the suprachiasmatic nucleus of the
hypothalamus; (ii) homeostatic processes in which sleep pressure builds during wake and
declines during sleep; and (iii) non-linear interaction of these processes (Dijk et al. 1992,
Dijk and Czeisler 1994, Wyatt et al. 2004, Cohen et al. 2010). In these controlled laboratory
conditions, environmental factors such as schedule, light levels, activity level and meal
timing have been carefully controlled and other activities such as caffeine consumption and
pharmaceuticals have been eliminated. Therefore, translation and application of these
experimental findings into an operational/real-world setting in which prediction of
performance in an individual has been a goal, has been limited. Several mathematical
models have used the results of these laboratory experiments to attempt to provide a
predictive tool of the effect of a given sleep/wake schedule on cognitive performance (for
review, see (Van Dongen 2004)); some of these models have also incorporated data
collected under operational settings (see (Mallis et al. 2004)). These models, however,
require inputs of prior sleep/wake history and possibly ambient light levels to appropriately
estimate sleep/wake homeostasis (Akerstedt et al. 2004, Hursh et al. 2004) and circadian
phase (timing) (Jewett and Kronauer 1999). In operational/real-world settings, requiring
these inputs decreases the practical utility of these models. Furthermore, the output of the
models are based on population averages, which also limits utility since there are large inter-
individual differences in performance measures, such that some people maintain levels of
performance comparable to their well-rested baseline values even after many hours or
several days of sleep deprivation whereas others become impaired more quickly (Van
Dongen et al. 2004).

Recent model developments have enabled predictions based on an individual (Van Dongen
et al. 2007, Rajaraman et al. 2008). These models, however, require that individuals are
monitored over several hours or days in order to identify the magnitude of their performance
impairment in response to sleep loss relative to their baseline performance levels. In a real-
world setting, prolonged multiple data collection sessions may not be feasible. What is
needed is a real-time measure that can provide information about an individual’s level of
performance impairment at that particular moment in time with a single measurement
session and without prior knowledge of variables such as past performance on cognitive
tests, prior sleep/wake history, circadian phase, ambient light levels or prior light exposure
history.

We hypothesized that pattern recognition algorithms could be used to extract important
features using already collected data as the basis for categorizing (or classifying)
performance impairment in a new individual using data collected from a single testing
session by matching the features of the new data (test set) to the existing dataset (training
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set). If successful, pattern recognition algorithms could utilize the large volumes of already-
collected data from laboratory studies to create training sets against which to classify new
data collected in the field. In addition, this classification can be made using only the features
of the training set that are deemed necessary for reliably identifying the class (e.g., low or
high performance impairment) of a new individual,. The pattern recognition algorithm may
not require information such as prior sleep/wake history, lighting levels and/or baseline
performance information since it is presumed that the effects of these variables are
embodied in the behavioral response and do not require explicit inclusion as features in the
training set. In this paper, we introduce the use of pattern recognition algorithms to identify
level of performance impairment and validate these pattern recognition algorithms on data
previously collected in a field study of hospital interns (Lockley et al. 2004, Anderson et al.
in press) and in a field study of ground control crews working on a Mars sol (T=24.65 hr)
schedule (Barger et al., in press).

2.0 Methods
2.1 Datasets

All studies were approved by the Partners Healthcare Institutional Review Board. Informed
consent was obtained from all subjects prior to study.

(a) Laboratory Data: The laboratory data used to train and validate our pattern recognition
algorithms were collected under three separate protocols that included sleep deprivation. All
subjects were healthy, not on medications and were not allowed caffeine or other stimulants.
Details of subject selection and experimental protocols are included in the published reports
(Klerman and Dijk 2008, Cohen et al. 2010) of each protocol. In total, the data set used to
train and validate our pattern recognition algorithms includes 33 subjects and 506 testing
sessions.

In the first study, younger (N = 17, 9 female, mean age 23.1 ± 3.9 years, range 18–32 years)
and older subjects (N = 7, 3 female, mean age 65.6 ± 4.2 years, range 60–71 years) were
scheduled to 28 (N=14, 5 older) or 52 (N=10, 2 older) hours of sleep deprivation. During the
sleep deprivation component of the protocol, the 10-minute version of the Psychomotor
Vigilance Task (PVT) was administered every 2 hours and the Karolinska Sleepiness Scale
(KSS) was administered every 30 minutes. Only KSS scores administered immediately prior
to a PVT were used for this analysis.

In the second study, 9 subjects (4 female, mean age 27.1 ± 4.5 years, range 21–34 years)
were scheduled to a T=42.85-hr forced desynchrony protocol with 10 hours of bedrest
opportunity per 42.85-hr “day” (Cohen et al. 2010). Subjects were awake 32.85 hours per
“day”, thereby having an extended wake duration similar to the acute sleep deprivation
condition in the first laboratory study. The 10-minute version of the PVT was administered
every 4 hours during this protocol and the KSS was administered every 30 minutes; only
data from the first day of the forced desynchrony were included in our data set (i.e., a single
32.85-hr wake episode) and only KSS data associated with PVT data were used.

In the third study (St. Hilaire et al., unpublished data), 12 subjects (6 female, mean age 23.3
± 3.0 years, range 18–30 years) were scheduled to a 50-hr sleep deprivation preceded by 3
baseline days in which subjects were scheduled to 8 hours of sleep and 16 hours of wake at
their habitual times. During the sleep deprivation component of the protocol, the PVT was
administered every 2 hours. The subjects from this protocol were not used in the training set;
instead the PVT data from these subjects were used as an independent data set to determine
classification labels for each test session included in the training set (described below).
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(b) Field data: Two data sets were used. In these two data sets, the health, medication,
pharmaceutical and caffeine use, and sleep schedule (including napping) behavior of the
subjects were not controlled. For the first study, as described in (Lockley et al. 2004;
Anderson et al. in press), PGY-1 medical interns were enrolled in a study designed to
quantify the effects of extended duration work hours (24–30 hours) on sleep, alertness and
the rates of medical errors among interns working in critical care units. This study tested the
hypothesis that eliminating extended work shifts with an intervention (IV) schedule would
increase sleep duration and reduce attentional failures as compared to a traditional intern
schedule in which shifts were scheduled for up to 30 continuous hours every 3rd night (Q3
schedule). Additional details about the Q3 and IV schedules can be found in (Lockley et al.
2004). For this analysis, data from 34 interns (11 female, mean age 28.0 ± 1.8 years, range
24–32 years) were available. PVT data were collected intermittently in each intern during
both schedules. The PVT task used in this study was the same 10-minute version as the task
used for the laboratory studies described above. The intern data were used as an independent
test set to determine whether a training set consisting of data from laboratory studies is able
to classify individual performance impairment using data collected under real-world (field)
conditions. All 34 subjects were used for the final analysis of the Q3 schedule; 1 subject on
the IV schedule had inadequate sleep/wake data and was excluded.

For the second study, (Barger et al., in press), all subjects were scientists or engineers
working on a 24.65-hr Mars sol at the Science Operations Center in Tucson AZ in support of
the Phoenix Mars Lander, which landed on Mars on May 25, 2008. Nineteen subjects total
(6 female, mean age 36.8 ± 9.7 years, range 25–63 years) participated in a study to assess
performance and alertness and sleep/wake patterns from actigraphy and sleep diaries, while
living and working on the Mars sol schedule. Participants were asked to complete the
previously validated 5-minute version of the PVT using a portable handheld device (Loh et
al. 2004, Lamond et al. 2005, Roach et al. 2006) at least twice per day. Additionally, we
used this data set to test whether results from a 10-minute PVT (from laboratory studies) can
be used to classify results from a 5-minute PVT data (from real-world conditions).
Seventeen subjects from the Phoenix Mars Lander group were used for this final analysis; 2
subjects had inadequate sleep/wake or PVT data and were excluded.

2.2 Description of the Pattern Recognition Algorithms
2.2.1 Feature Space—Pattern recognition algorithms require a set of data called the
feature space to represent each object (i.e., each testing session from each individual) as a
point in n-dimensional space. For this analysis, each object in the feature space was derived
from an individual testing session that included the Psychomotor Vigilance Task (PVT), the
Karolinska Sleepiness Scale (KSS), and the length of time awake and time of day when the
testing session was administered. These features were chosen because the PVT and KSS are
relatively easy to administer in a field setting, for example on a hand-held device.
Additionally, there are large amounts of PVT and KSS data available from laboratory sleep
deprivation studies for different lengths of time awake and circadian phase.

The PVT is an objective performance test that measures sustained attention to a visual
stimulus presented at a high signal rate with a randomized inter-stimulus interval distributed
uniformly from 1–9 seconds. Subjects are instructed to respond as quickly as possible once
the visual stimulus appears on the screen; the reaction time (RT) to this stimulus is recorded
and provided as feedback to the subject (Dorrian et al. 2005). In typical analysis of PVT
data, a summary statistic, such as mean or median RT or the number of lapses (RT ≥ 500
ms), is computed from each testing session and changes are tracked across sessions. The
distribution of RT percentiles (5th–95th) collected during a 10-minute session of the PVT has
also been used to compare performance changes across sessions (Santhi et al. 2007).
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The KSS is a subjective measure that asks individuals to rate their sleepiness in the past 5
minutes on a 1 – 9 scale, with 1 indicating “very alert” and 9 indicating “Sleepy – great
effort to keep awake – fighting sleep” (Åkerstedt and Gillberg 1990). The version of the
KSS administered in all laboratory and field studies used in this analysis included
descriptors on the odd numbers only.

The full feature space to be tested included 8 dimensions: 1) the mean fastest 10% and 2)
median response times from PVT, 3) number of PVT lapses, 4) KSS score, 5) length of time
awake (LOTA) and 6) time of day (TOD) at the time the testing session was administered,
7) age and 8) sex of the individual. TOD was binned across 24 hours into six 4-hour bins:
2:00–5:59, 6:00–9:59, 10:00–13:59, 14:00–17:59, 18:00–21:59, and 22:00–1:59.

The laboratory training set (feature space) consisted of 506 testing sessions (objects). A total
of 33 subjects contributed to these 506 testing sessions. Thus, each individual represented in
the training set was associated with one or more objects in the feature space. For example, a
subject studied under a 52-hour sleep deprivation that completed a test session every 2 hours
contributes 28 testing sessions to the training set.

2.2.2 Classification Labels—In order to use pattern recognition algorithms to classify
the relative performance impairment for each individual during each test battery session, it
was necessary to classify each of the 506 sessions in the laboratory training set with a label
reflecting relative performance impairment. There is currently no ”gold” standard or
biomarker for defining performance impairment in response to sleep loss. It has been shown
that several measures extracted from the PVT change in response to sleep deprivation in
laboratory studies (e.g., Van Dongen et al. 2003; Belenky et al., 2003; Wyatt et al., 2004;
Cohen et al., 2010), and the number of PVT lapses has been unofficially accepted as a
potential marker of performance impairment. To our knowledge, however, there is no
evidence that PVT lapses map onto real-world functioning; no studies have reported that X
number of lapses indicates Y% increase in, for example, motor vehicle accidents, medical
errors or aviation errors. In fact, at least one study suggests that PVT median RT may be a
better indicator of performance impairment than PVT lapses in medical residents on light vs.
heavy call schedules (Arnedt et al. 2005). PVT lapses, furthermore, represent an arbitrary
cut-off (500 msec) that does not reflect inter-individual differences in response speed. The
90th percentile of reaction times, a measure based on the entire RT distribution rather than
an absolute value, has been shown to be a robust measure of performance impairment in
laboratory data (Santhi et al. 2007). The mean slowest 10% RT, a summary statistic
generated from each PVT session and reported in multiple publications (e.g., Wyatt et al.
2004; Grady et al. 2010; Anderson et al. in press), is similar to the 90th percentile measure.
We hypothesize that tracking the change in mean slowest 10% RT provides a more robust
measure of an individual’s change in performance over sleep deprivation than the number of
PVT lapses. Therefore, to classify each testing session for the training set, we first computed
the relative mean slowest 10% RT for each individual across a sleep deprivation episode by
calculating the percent change in mean slowest 10% RT for each session from the best (i.e.
lowest) mean slowest 10% RT score; this assumes the testing session with the lowest mean
slowest 10% RT represents the individual’s best possible performance. These relative mean
slowest 10% RTs were then categorized into three groups, labeled “1”, “2” or “3”,
representing low performance impairment, moderate performance impairment and severe
performance impairment, respectively. Each testing session was categorized into one of
these three groups based on the following cut-off values: a testing session was labeled as “1”
if the percent increase in mean slowest 10% was less than 25%, “3” if the percent increase
was greater than 100% and “2” if the percent increase was between 25% and 100%. A 25%
increase in mean slowest 10% corresponds to an increase of ~90ms in this measure and a
100% increase in corresponds to an increase of ~360ms. The number of lapses occurring
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during testing sessions in which there was a ~25% increase in mean slowest 10% was
between 0 and 17, and in which there was a ~100% increase in mean slowest 10% RT, was
between 6 and 17 lapses. The label for each testing session in the training set, therefore,
reflected performance changes across multiple testing sessions within an individual; the
label could not be reliably derived from an outcome variable from a single testing session,
such as the number of PVT lapses from a single session.

2.2.3 Algorithm selection—We tested two methods for pattern recognition: the k
Nearest Neighbor (kNN) algorithm and a Naïve Bayes classifier. Both are supervised
learning methods that compare a test object of unknown class to the training set, which
consists of a set of objects with known classes. We chose to test these two methods for their
relatively small computational requirements to highlight the feasibility of transitioning these
methods to use in the field.

kNN classifies the unknown object by a majority vote of its k “nearest” neighbors, where
“nearest” is defined by minimizing the distance between the test object and each object in
the training set across the n-dimensions of the feature space. If k = 1, the object in the testing
set is simply assigned to the class of its nearest neighbor. For the kNN implementation used
in this analysis, Euclidean distance was used to determine the k nearest neighbors. This
method was programmed and run in MatLab v7.11.0.

The Naïve Bayes classifier estimates the parameters of a defined probability distribution
(e.g., Gaussian) during training. To test a new object, a posterior probability of that test
object belonging to the class is computed. The Naïve Bayes classifier assumes that all
features used in the feature space are conditionally independent; however, even when
features are not independent, however, the Naïve Bayes classifier can still be used. For the
Naïve Bayes implementation used in this analysis, both a normal (Gaussian) distribution and
a kernel distribution were tested. When the Gaussian distribution is specified, the Naïve
Bayes classifier assumes each feature is normally distributed for each class. This assumption
is not made when the kernel distribution is used; instead, a separate kernel density estimate
is computed for each class. The NaiveBayes function from the MatLab v7.11.0 Statistics
Toolbox was used for this analysis.

2.2.4 Parameter validation and feature space selection—The appropriate use of
pattern recognition algorithms requires a validation step before applying the chosen
algorithms to the test set. The validation step includes choosing both the optimal parameters
for the algorithm (e.g. parameter “k” for kNN, and the normal or kernel distribution for
Naïve Bayes) and choosing the optimal feature space (out of the 8 available features) that
best classifies the majority of the data. The test set cannot be used for the validation step,
thus we used data from the training set to validate the parameters and choose the feature
space. There are several methods for using the training set at the validation step. For
example, one method is to set aside a proportion (e.g., one-third) of the training set as a
validation set, and then use the validation set as a mock test set to optimize parameters and
the feature space to the remainder of the training set (e.g., the other two-thirds of the data).
For this analysis, however, we used the leave-one-out method to generate a unique
validation set for each subject: each of the 33 subjects was tested on a subset of the full
training set (506 test sessions) that omitted their own test sessions but included all of the test
sessions from each of the remaining 32 subjects (e.g., Subject 1 contributing 28 test sessions
to the full training set would be tested against a subset of training data containing only the
478 other test sessions).

To further improve on this validation approach, a method called bootstrap aggregation (or
“bagging”) was employed. The bagging method improves classification accuracy and
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reduces variance (Witten and Frank 2005). From each unique validation set created for each
subject, we further generated 100 training sets that included a subset of test sessions from
each validation set. Each of these 100 subset validation sets contained 150 test sessions
randomly sampled with replacement from the validation set. For example, for Subject 1,
their validation set contained 478 test sessions from each of the other 32 subjects, and each
of their 100 subset validation sets contained 150 test sessions from this sample of 478 test
sessions. Thus, for Subject 1, each test session (a total of 28 test sessions) belonging to
Subject 1 was classified independently on 100 subset validation sets, which each generated a
classification label for that test session, resulting in 100 classifications for each of the 28 test
sessions for Subject 1. The final predicted classification label for each of these 28 test
sessions was chosen by majority rule: for example, if the test session was classified as a ‘1’
for 60 of the subset validation sets, ‘2’ for 30 of the subset validation sets and ‘3’ for 10 of
the subset validation sets, the final predicted classification label for that test session for that
subject would be chosen as ‘1’. See Supplementary Figure 1 for further details.

The validation steps just outlined above were used to determine the optimal value of k for
the kNN algorithm and the optimal probability distribution – normal or kernel – to use for
the Naïve Bayes classifier. For the kNN algorithm, general practice limits the value of k to
less than the square root of the number of objects (in this case, √506 ≈ 23) in the full training
set, and thus values of k = 1 to k = 22 were tested. Values of k in multiples of 2 and 3 were,
however, omitted to avoid tie-breakers among the three classification groups. For kNN the
value of k which resulted in the highest percentage of correctly classified test sessions across
all subjects was chosen as the optimal k to be used for running the algorithm on the test set
data. For the Naïve Bayes classifier, the probability distribution which resulted in the highest
percentage of correctly classified test sessions across all subjects was chosen as the optimal
distribution to be used for running the algorithm on the test set data

Once optimal parameters were chosen for each of the algorithms, it was necessary to
determine the optimal feature space from the full feature space to use for classification. The
same validation procedures outlined above were used to create the appropriate subset
validation sets for each of the 33 subjects in the full training set. To choose the optimal
feature space from the set of 8 features available, a method called forward feature selection
was used. In the first step of forward feature selection, each of the 8 features (PVT mean
fastest 10%, median and lapses, KSS score, LOTA, TOD, age, sex) were independently used
to classify all of the data in the training set (using the leave-one-out method and bagging as
described above). The one feature with the highest classification percentage (i.e., that
maximized the percent of testing sessions in the training set that were correctly classified)
was selected. In the next step, each of the remaining features was paired with the selected
feature from the first step and all of the data in the training set were re-classified. For
example, if LOTA was found to provide the highest classification percentage at the first
step, then at the second step of forward feature selection, the following 2-dimensional
feature spaces were tested: LOTA and PVT mean fastest 10% RT, LOTA and median RT,
LOTA and lapses, LOTA and KSS, LOTA and TOD, LOTA and age, LOTA and sex. The
feature pair with the highest classification percentage was chosen. At the third step of
forward feature selection, this feature pair (e.g. LOTA and KSS) was paired with the
remaining features (i.e., PVT mean fastest 10% RT, median RT, lapses, TOD, age, sex)
Feature selection continued in this way, testing the addition of each feature one by one to the
optimal feature space selected at the previous forward selection step, until the classification
percentage no longer improved.

2.2.5 Testing on field data—The optimal parameters and feature spaces chosen for the
kNN and Naïve Bayes algorithms were determined from validation against the laboratory
training set. These optimized parameters and feature spaces were used to classify the data in
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our two field-collected data sets. Each object in the test set, which represented a test session
completed by an individual at a given LOTA and TOD, was compared to all 506 testing
sessions (33 subjects) in the laboratory training set. In a true test set, the true class of a test
object would be unknown, and the purpose of the analysis would be to predict the class to
which the object belongs. For this analysis, however, all objects in the test set were
classified a priori (see above) in order to report classification sensitivity and specificity
results.

To compare the ability of the kNN and Naïve Bayes algorithms to classify correctly each
object in our test set, we computed sensitivity and specificity scores. Sensitivity measures
the proportion of true positives that are correctly identified as such. To compute the
sensitivity value for testing sessions labeled as “1” (low performance impairment), for
example, we computed the proportion of testing sessions categorized as “1” that were
correctly predicted by the algorithm as belonging to “1”. For example, if 100 testing
sessions were a priori labeled as “1” and the algorithm correctly identified 50 of these
testing sessions as belonging to “1”, then the sensitivity of the algorithm for classifying “1”
would be 50%. Specificity measures the proportion of true negatives that are correctly
identified as such. To compute the specificity value for testing sessions labeled as “1”, for
example, we computed the proportion of testing sessions categorized as “2” or “3” that were
not identified by the algorithm as “1” by summing the number of testing sessions that were
correctly predicted as “2” or “3” and dividing this sum by the total number of testing
sessions originally labeled as “2” or “3” in the test set. For example, if 50 testing sessions
were labeled in the test set as “2” and 25 were labeled in the test set as “3”, and the
algorithm correctly predicted 60 of those testing sessions as not belonging to “1” (meaning
15 of those testing sessions were incorrectly predicted as belonging to “1”), then the
specificity for “1” would be 80%. The false positive rate for “1” can be computed as the
specificity value subtracted from 100%; for this example, the false positive rate would be
20%..Both sensitivity and specificity were computed in this way for each label “1”, “2” and
“3”.

Positive predictive value (PPV) and negative predictive value (NPV) were also computed
for classification results from each algorithm. PPV is often used in diagnosis of disease and
reflects the probability that a positive test result reflects the underlying condition being
tested. A PPV of 100% for a disease indicates that all patients that tested positive for the
disease were found to have the disease (i.e., no false positives). In contrast, NPV reflects the
probability that a negative result means the patient does not have the disease. An NPV of
100% for a disease indicates that all patients that tested negative for the disease were found
to not have the disease (i.e., no false negatives). For our classification results, for example,
PPV for “1” was computed as the number of test sessions labeled in the test set as ”1” that
were also predicted as “1” (true positives) divided by all the test sessions predicted as
belonging to “1” (true positives and false positives). For example, if 100 test sessions were
predicted as “1”, and 90 of these were labeled in the test set as “1” while 10 were labeled in
the test set as “2” or “3”, then the PPV for “1” would equal 90%. NPV for “1” was
computed as the number of test sessions labeled in the test set to “2” or “3” that were also
predicted as “2” or “3”, divided by the number of all test sessions predicted by the algorithm
as “2” or “3” (a number which may include test sessions that are labeled in the test set as
“1”). For example, if 100 test sessions were predicted by the algorithm as “2” or “3” and 80
of these test sessions were labeled as “2” or “3” (i.e. not labeled as “1”), then the NPV for
“1” would equal 80%. Both PPV and NPV were computed in this way for each label “1”,
“2” and “3”.
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2.3 Comparison of Pattern Recognition Algorithm Results to Classification Based on
Lapses

The goals of using pattern recognition algorithms for this analysis were 1) to demonstrate
the ability to classify performance impairment from a single observation of the state of an
individual’s neurobehavioral performance level, i.e. a single testing session and 2) to use a
measure of performance impairment that relates the current level of performance to the
individual’s baseline or optimal performance, e.g. the relative mean slowest 10% RT, rather
than an absolute value, such as the number of PVT lapses in a testing session. To show the
benefit of using a relative vs. absolute measure of an individual’s performance impairment,
plus additional information derived from the individual’s age, sex, LOTA, and subjective
sleepiness assessment, we compared the ability of our pattern recognition algorithms to
classify performance impairment from a single testing session in data collected from the
field to predictions based not on our algorithm (the feature space of which includes PVT
lapses as a potential predictor), but on absolute PVT lapses only. Although PVT lapses have
been accepted as a potential marker of performance impairment under total sleep deprivation
studies (e.g., Van Dongen et al., 2003), to our knowledge no studies have been conducted to
correlate the number of PVT lapses with a real-world outcome (e.g., X PVT lapses equates
to Y% increase in motor vehicle accidents). Thus, we chose to designate the three levels of
performance impairment (“1” low, “2” medium and “3” severe) using cut-off values based
on the number of hours awake. These cut-off values were determined using an independent
laboratory data set (i.e., Laboratory study 3, which was not included in the laboratory
training set described above) (Figure 1). The average number of PVT lapses was computed
after 16 and 32 hours of wakefulness: 16 hours awake was chosen as the initial cut-off based
on the 2:1 wake:sleep ratio on a normal 24-hr day and the fact that performance has been
documented to deteriorate rapidly after 16 hours of continuous wakefulness (Jewett and
Kronauer 1999). At 16 hours awake, the average number of PVT lapses in all 12 subjects
was ~3; therefore all testing sessions in which the number of PVT lapses was ≤ 3 were
classified to group “1”, representing low performance impairment. After 32 hours awake,
the average number of PVT lapses observed across these 12 subjects was ~21, and therefore
all testing sessions with the number of PVT lapses ≥ 21 were predicted as belonging to
group “3” representing severe performance impairment. All testing sessions with PVT
lapses between 3 and 21 were predicted as belonging to group “2” representing medium
performance impairment. Sensitivity, specificity, PPV and NPV were computed for these
classification predictions and compared to those obtained from using the pattern recognition
algorithms for the field-collected data test sets.

3.0 Results
3.1 Classification Results for Laboratory Data (Training Set)

Our first step in using the pattern recognition algorithms involved choosing optimal
parameters for the kNN and Naïve Bayes methods. The optimal value of “k” for the kNN
algorithm was determined using the full feature space (8 dimensions) to classify all the data
in the training set (33 subjects) using a leave-one-out method and bagging for each value of
k. An optimal value of k = 1 was found, which resulted in 67% correct classification of all
the data in the training set. The optimal Naïve Bayes distribution was also determined using
the full feature space (8 dimensions) to classify all the data in the training set (33 subjects)
using a leave-one-out method for each distribution. The kernel distribution was found to be
optimal and resulted in 72% correct classification of all data in the training set. Bagging was
not used for the Naïve Bayes algorithm due to the increased computational time, which was
~6 seconds without bagging and over 1 hour with bagging. No considerable increase in
classification accuracy was found when bagging was used.
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The next step was to determine the best combination of the 8 available features to use for
our final feature space using forward feature selection. For the kNN algorithm, feature
selection resulted in an optimal feature space consisting of PVT lapses, LOTA, TOD, KSS
and sex, with a 73% correct classification rate. For the Naïve Bayes classifier, feature
selection resulted in the same optimal feature space with a 75% correct classification rate.

Sensitivity, specificity, PPV and NPV results were computed separately for each of the
groups 1, 2, and 3 for the optimal feature space for each method. These results are presented
in Table 1. Table 1 also shows the “confusion matrix” of the raw values of actual vs.
predicted classifications for each group for each method. kNN and Naïve Bayes produce
similar predictions across all three classification groups.

It is possible to estimate probabilities of future susceptibility given current status. Only one
of the 33 subjects in the training set was labeled with low performance impairment (“1”) on
all test sessions. For the remaining 32 subjects, once a session was labeled as a “2” or a “3”
(starting anywhere from 2 hours to 26 hours after wake), 84% of subsequent testing sessions
for that wake episode were also labeled as “2” or “3”.

3.2 Classification of Real World Data (Test Set)
3.2.1 Intern data set—For the intern data set with Q3 and IV schedules, age, sex, PVT
mean fastest 10% RTs, medians, and lapses, LOTA and TOD data were available; KSS was
not. As naps were allowed in this field study, LOTA was determined by computing the
length of time since any sleep episode >30 minutes. The optimal feature spaces derived
above from the laboratory training set were used in the kNN and Naïve Bayes algorithms to
classify testing sessions from the Q3 and IV datasets; KSS was omitted from the feature
space because it was not collected in these test sets.

In post-hoc analysis of data from the intern Q3 (standard) schedule, 329 out of the 940
sessions across the 34 subjects were labeled as ‘1’ using our labeling criteria described
above (i.e. derived from relative mean slowest 10% RTs), whereas 409 were labeled as ‘2’
and 202 as ‘3’. In post-hoc analysis of data from the intern IV (intervention) schedule, 319
out of the 865 PVT trials across 34 subjects were labeled as ‘1’, while 431 were labeled as
‘2’ and 115 were labeled as ‘3’. The sensitivity, specificity, PPV and NPV results for both
the kNN and Naïve Bayes methods for both the Q3 and IV schedules are presented in Table
2. The kNN algorithm correctly classified 49% of all test sessions on the Q3 schedule and
51% of all sessions on the IV schedule; the Naïve Bayes classifier correctly classified 51%
of all sessions on the Q3 schedule and 51% of all sessions on the IV schedule. Using PVT
lapses alone to classify the data, based on the cut-off values discussed above in section 2.3,
52% of sessions on Q3 and 56% of sessions on IV were classified correctly. Both methods,
either employing one of the algorithms (kNN or Naïve Bayes) or the classification based on
PVT lapse cut-offs, were most effective at correctly classifying testing sessions labeled as
“1”, and considerably underestimated testing sessions labeled as “2” and “3”. The confusion
matrices for the kNN and Naïve Bayes algorithms are presented in Table 3. Confusion
matrices for the classification based on PVT lapses are presented in Table 4.

Since our optimal feature space used in the kNN and Naïve Bayes algorithms was based on
classification of laboratory data, we considered the possibility that different features may be
optimal for classifying field-collected data. By forward feature selection using laboratory
data for training on the kNN algorithm, we found the optimal feature space for classifying
the Q3 data included lapses and mean fastest 10% RTs only, and the optimal feature space
for classifying the IV data included median, lapses, TOD and sex. Similarly, a different
optimal feature space emerged for the Naïve Bayes algorithm, including only lapses and age
for the Q3 data and lapses only for the IV data. Using these optimal feature spaces improved
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the overall percentage correctly classified by only 1–5%, but considerably decreased the
number of test sessions for which performance impairment was underestimated. Table 5
shows the results of these feature spaces found post-hoc from the intern data.

3.2.1.1 Chronic sleep deprivation effects on PVT performance on the Intern Q3
schedule: Anderson et al. (in press) compared acute vs. chronic effects of sleep deprivation
on reaction time when subjects were on the Q3 schedule by comparing the change in RT
distributions at the beginning of the first work shift (Extended Duration Work Shift or
EDWS 1) on Q3 to the end of the first work shift (acute effect) and PVT performance at the
beginning and end (acute effect) of the sixth work shift (EDWS 6) on Q3, which occurred
~3 weeks after the first work shift in EDWS 1(chronic effect). They found a significant
acute effect for both shifts (EDWS 1 and EDWS 6) and a chronic effect between EDWS 1
and EDWS 6. To determine whether a chronic effect could be observed in our classification
results (Table 3), we grouped the classification results across the same test sessions included
in their analysis. We used only subjects who had an equal number of test sessions in EDWS
1 and EDWS 6; if extra sessions were recorded in either EDWS, they were omitted from this
analysis. We found that from EDWS 1 to EDWS 6, the number of test sessions classified as
1 was decreased and that the number of sessions classified as either 2 or 3 increased (Figure
2) for both the kNN and Naïve Bayes methods as well as the classification based on PVT
lapses. Using a chi-square test for goodness-of-fit, assuming a null hypothesis that the
proportion of 1, 2 and 3 does not change from EDWS 1 to EDWS 6, we observed a
significant change from EDWS 1 to EDWS 6 (kNN χ2 = 23.79, p < 0.001; Naïve Bayes χ2

= 83.73, p < 0.001; PVT Lapses χ2 = 43.49, p < 0.001), in accordance with the results
reported in Anderson et al. (in press).

3.2.2 Non-24-hr Phoenix Mars work schedule—For this dataset, age, sex, PVT,
LOTA, KSS and TOD data were available. As in the Q3/IV test data, the optimal feature
spaces derived above from the laboratory training set were used in the kNN and Naïve
Bayes algorithms to classify testing sessions and included lapses, LOTA, TOD, KSS and
sex.

In post-hoc analysis of the individuals, 203 out of the 1239 sessions across 17 subjects were
labeled as “1”, while 565 were labeled as “2” and 471 as “3”. The sensitivity, specificity,
PPV and NPV results for both the kNN and Naïve Bayes methods are presented in Table 2.
The kNN algorithm correctly classified 33% of all test sessions on the non-24-hour schedule
and the Naïve Bayes classifier correctly classified 27% of all sessions. In contrast,
classifying the data using the absolute number of PVT lapses alone, only 24% of sessions on
the non-24-hour schedule were classified correctly. Both the kNN and Naïve Bayes
algorithms were more effective at correctly classifying test sessions labeled as “3” than the
classification based on PVT lapses. The confusion matrices for the kNN and Naïve Bayes
algorithms are presented in Table 3. Table 4 shows the confusion matrix for classification
based on PVT lapses of the non-24h-schedule test set.

For this field-collected data set, we again tested the possibility that a different “optimal”
feature space existed than the one based on laboratory data. For the kNN algorithm, the
optimal feature space for classifying the non-24-hour schedule data included median PVT
RTs and KSS, and for the Naïve Bayes algorithm only age and sex were included in the
optimal feature space. Using these feature spaces improved overall classification accuracy to
40% and 42% for the kNN and Naïve Bayes algorithms, respectively, and considerably
decreased the number of test sessions for which performance impairment was
underestimated. Table 5 shows the results of these feature spaces found post-hoc from the
non-24-hour schedule data.
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4.0 Discussion
Currently, performance impairment is defined by absolute performance of an individual at
one point in time compared to group averages. Such methods do not take into account
individual differences in baseline performance, and impairment is often detected only after
performance has already declined to a dangerous level. As performance can deteriorate
rapidly depending on the sleep-wake and circadian history (Cohen et al. 2010), it would be
useful to detect the signature of an individual experiencing relative impairment to identify
individuals that are on the verge of rapid deterioration in performance before they actually
reach dangerous levels. In this paper, we tested the ability of pattern recognition algorithms
to classify impairment in response to sleep loss, using features extracted from a single
testing session, after being trained on a separate data set. In order to be able to use individual
testing sessions to classify an individual’s performance impairment, we first needed to
construct an objective classification scheme. There is significant inter-individual variability
in performance, both at baseline and across sleep deprivation. We chose a classification
scheme that classified individuals on the percent change in mean slowest 10% RTs on the
PVT during sleep deprivation. Each testing session for each individual was labeled as
reflecting low, medium or severe performance impairment using 25% and 100% relative
increases in mean slowest 10% RT as cut-offs to determine classification to each impairment
level. We tested two pattern recognition algorithms, kNN and Naïve Bayes classifier.
Although both algorithms performed similarly, overall the kNN algorithm is simpler to
implement and computation time is less than for the Naïve Bayes classifier.

It is important to note that the classification of each testing session takes into account only
current information about the individual’s behavior. For example, if the pattern recognition
algorithm classifies a test object as “2”, this indicates that the person’s current performance
level is equivalent to someone with moderate performance impairment relative to their best
or optimal performance, but does not indicate whether the individual will continue to
respond poorly to subsequent sleep loss. We know from analysis of our training set data
taken from laboratory experiments, however, that once an individual has a testing session
labeled as “2” or “3”, 84% of their subsequent testing sessions for that wake episode will
also be labeled as “2” or “3”, indicating that they will probably continue to experience
medium to severe performance impairment without an intervention such as sleep.

One shortcoming of our approach is that we are using PVT measures both in our feature
space and in our classification labels. Using forward feature selection methods, it was found
that PVT measures combined with additional information (e.g., TOD) were better than PVT
measures alone at predicting performance impairment. Additionally, we used relative mean
slowest 10% RTs rather than an absolute measure such as lapses based on a 500 ms
threshold, because some individuals at baseline who are presumably well-rested may have a
similar mean slowest 10% RT score to individuals who are sleep-deprived; while their
baselines are slower, they are not necessarily at risk of rapid deterioration in performance
compared to someone with a faster baseline that is starting show relative decline from
fatigue. Although the absolute number of PVT lapses for one testing session are a useful
measure to classify performance impairment, as evidenced by its inclusion in our optimal
feature spaces, our analysis here has shown that the absolute number of PVT lapses over a
single testing session cannot alone determine an individual’s relative performance
impairment, particularly in our field-collected data when subjects show severe performance
impairment in the mean slowest 10% RT but not in the number of PVT lapses. This suggests
that lapses may not map onto real-world functioning, since the field-collected data sets
demonstrate that individuals can have a low number of PVT lapses but still show large
decrements in performance based on other measures. A previous study of medical residents
found that the number of PVT lapses had no significant change between a light vs. heavy

St. Hilaire et al. Page 12

Accid Anal Prev. Author manuscript; available in PMC 2014 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



call schedule, but that PVT median RT significantly increased (Arnedt et al. 2005).
Additionally, the cut-off of 500 ms to define a lapse may not be appropriate for all
individuals. Distribution of reaction times shows large inter-individual differences, including
age and sex effects (Wyatt et al. 2004, Blatter et al. 2006, Duffy et al. 2009). Furthermore,
time to respond on the PVT depends on whether eyes are open, closed or looking away at
the time of stimulus presentation and a lapse just above 500 ms may represent a different
mechanism of attentional failure than a lapse of several seconds (Anderson et al. 2010).

We tested our validated feature space and training set from laboratory data on data collected
in two field studies: a population of hospital interns who frequently work extended hours or
at night and a population of ground crew working the Phoenix Mars mission on a 24.65-hr
Mars sol schedule. Our pattern recognition method was able to correctly classify subjects
labeled as “1” low performance impairment 80–98% of the time, depending on which
algorithm was used. Our pattern recognition methods were less successful at predicting “2”
medium and “3” severe performance impairment in the field-collected data sets, and often
underpredicted the level of performance impairment. The PVT administered during the
non-24-hr Mars sol schedule, however, was the 5-minute version of the task. The PVT
shows a time-on-task effect, with longer RTs occurring in the later minutes of the task (Paus
et al., 1997, Tucker et al. 2009). Although the 5-minute version of the PVT has been
previously validated (Loh et al. 2004, Lamond et al. 2005, Roach et al. 2006), a difference in
the distribution of RTs may explain why our training set and classification labels, which
were based on the 10-minute version of the PVT, were less successful predicting medium
and severe performance impairment in the subjects on the non-24-hr Mars sol schedule.

A possible limitation of the training set used here to optimize parameters and feature spaces
of our pattern recognition algorithms is that it comes from laboratory data in which subjects
were not allowed any substances including caffeine, nicotine or alcohol, whereas in both the
intern and non-24-hr schedules subjects had free access to stimulants and many reported
using them. Using laboratory data, therefore, to quantify performance impairment in
populations which have access to performance-altering substances may not always be
appropriate. These differences may also explain why different feature spaces were found to
be better predictors when applied to the field-collected data compared to the feature spaces
derived from the laboratory data. Our analysis suggests that features that are important
indicators of performance impairment in a laboratory setting (e.g. LOTA, TOD) may not be
important indicators of impaired performance under real-world conditions. For example, the
TOD as a proxy for circadian phase as defined in this analysis (i.e., six 4-hr bins over a 24-
hr cycle) is an inappropriate measure for the non-24-hr Phoenix Mars schedule because the
majority of subjects were in phase with their work schedule, which moved forward 0.65-hr
per day (Barger et al. in press). Unfortunately, “optimal” feature spaces must be determined
a priori from existing data, and therefore more work should be done to identify features that
are robust predictors of performance impairment both in the laboratory and the field. Future
work should also develop training sets that include laboratory and non-laboratory data,
indicating data in which caffeine and other stimulants were used.

Another limitation of the current training set is that it includes only data collected from one
type of objective performance test. Although there are other neurobehavioral tasks
administered in the laboratory, many of these cannot be administered easily in the field. A
benefit of using pattern recognition algorithms is that there is no limit on the amount or type
of data that can be included in the feature space. It may therefore be possible to include in
the feature space other types of measurements that can be collected in a field setting to
improve further the classification results that we have reported here. The percentage of
eyelid closure time (PERCLOS), for example, has been shown as a potentially effective
predictor of low vigilance (Abe et al. 2011).

St. Hilaire et al. Page 13

Accid Anal Prev. Author manuscript; available in PMC 2014 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



In conclusion, we have presented a pattern recognition algorithm that makes use of data
from laboratory studies to classify performance impairment in response to sleep loss in other
individuals working at their jobs using data from a single collection period. We have shown
that this method can be used in conjunction with administration of the PVT and subjective
assessments of sleepiness in non-laboratory conditions to predict when individuals have low
performance impairment; however, more analysis is necessary to improve the algorithms to
predict more accurately when individuals reach medium and severe performance impairment
levels, particularly under real-world conditions. The ability to accurately classify low
impairment is useful, however, as individuals that are not in this classification can be
flagged as a potential safety concern, and limited resources may be devoted to more direct
supervision of their actual job responsibilities to judge safety of their performance or to
choose another individual to perform the task. Furthermore, while our definitions of medium
and severe performance impairment reflect increases in RT of ~90 msec and ~360 msec,
respectively, it is not clear how such an increase in RT translates to the risk of accidents and
errors in operational settings; more work in this area is needed to correlate objective
measures of performance impairment such as the PVT with such outcomes.

Once the algorithms have been improved, it would be advantageous to implement these
methods in a software device that could be used in a real-world setting to decide which
individuals may not be safe to continue working. An important open question is what steps
to take once an individual has been classified into a medium or severe performance
impairment category. An ideal scenario would be to remove that individual from further
work (and replace them with another individual if available) until adequate sleep could be
obtained, although in operational settings this option may not be safe or feasible. Future
work, therefore, should focus on interpreting the results of these algorithms in conjunction
with existing fatigue management scheduling tools and mathematical models which predict
levels of neurobehavioral performance and alertness under different sleep/wake and
circadian phase combinations. These tools can be used to predict the relative effectiveness of
various countermeasures, such as naps, caffeine or light, in an individual given their current
level of performance impairment. Once a countermeasure has been given, the algorithm can
be implemented again to determine whether the countermeasure has improved performance
and alertness to an acceptable level.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Insufficient sleep results in cognitive performance impairment

• There is widespread inter-individual variability in response to sleep loss

• Current methods to assess impairment rely on tracking an individual over time

• Our proposed methods can classify level of impairment from one field
assessment

• Such methods may identify individuals at risk before dangerous levels are
reached
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Figure 1. Number of PVT lapses as a function of length of time awake
Twelve subjects underwent a 50-hr sleep deprivation where the PVT was administered every
2 hours. The average number of PVT lapses (RT > 500 msec) were computed over the first,
second and third 16 hours of wakefulness for each subject and then across subjects. The
number of PVT lapses for each time awake bin is plotted as mean ± standard deviation.
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Figure 2. Classification of response by time within study for the two different methods
The number of test sessions classified as 1, 2 or 3 were compared between EDWS 1, the first
extended duration work shift of interns on a Q3 schedule, and EDWS 6, the sixth extended
duration work shift ~18 days later. Test sessions classified as 1 decreased from EDWS 1 to
EDWS 6 and those classified as 2 or 3 increased across EDWS for both the kNN (lower left
panel) and Naïve Bayes (upper right panel) methods as well as the classification based on
PVT lapses (lower right panel). Actual classification, determined post-hoc based on relative
mean slowest 10% RTs, is presented for comparison (upper left panel).
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Table 4

Confusion matrix results for the intern Q3 and IV schedules and Phoenix Mars non-24h-schedule for
classification based on number of PVT lapses.

Intern Q3

Actual

1 2 3

Predicted

1 309 232 7

2 20 167 180

3 0 10 15

Intern IV

Actual

1 2 3

Predicted

1 308 261 3

2 11 161 97

3 0 9 15

Phoenix Mars non-24h-schedule

Actual

1 2 3

Predicted

1 201 469 116

2 2 96 353

3 0 0 2
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